All of us face a variety of risks to our health as we go about our day-to-day lives. Driving in cars, flying in planes, engaging in recreational activities, and being exposed to environmental pollutants all pose varying degrees of risk. Some risks are simply unavoidable. Some we choose to accept because to do otherwise would restrict our ability to lead our lives the way we want. And some are risks we might decide to avoid if we had the opportunity to make informed choices. Indoor air pollution is one risk that you can do something about.

In the last several years, a growing body of scientific evidence has indicated that the air within homes and commercial buildings can be more seriously polluted than the outdoor air in even the largest and most industrialized cities. Other research indicates that people spend approximately 90 percent of their time indoors. Thus, for many people, the risks to health may be greater due to exposure to air pollution indoors than outdoors.

In addition, people who may be exposed to indoor air pollutants for the longest periods of time are often those most susceptible to the effects of indoor air pollution. Such groups include the young, the elderly, and the chronically ill, especially those suffering from respiratory or cardiovascular disease.
2.What Causes Indoor Air Problems?

Indoor pollution sources that release gases or particles into the air are the primary cause of indoor air quality problems in homes. Inadequate ventilation can increase indoor pollutant levels by not bringing in enough outdoor air to dilute emissions from indoor sources and by not carrying indoor air pollutants out of the home. High temperature and humidity levels can also increase concentrations of some pollutants.

Pollutant Sources

No home is immune to poor indoor air quality problems which can result from many sources. Firstly, this could result from biological contamination caused by living organisms such as bacteria, viruses, mold, pollen, dust mites and insect droppings that accumulate in ducts, carpeting, insulation and drains. Secondly, it can be caused by volatile organic compound (VOC) and chemical emissions resulting from the use of products such as cleaners, disinfectants, perfumes, air fresheners, hair sprays, cigarettes, insecticides, paint, carpets, adhesives, laminated furniture, gas, kerosene and coal. Thirdly, equipment such as stoves, central heating and cooling systems, humidification devices, furnaces and space heaters can also emit noxious chemical and particulate contaminants. Lastly, outdoor sources such as radon, pesticides, and outdoor air pollution can also be a significant contributor to indoor air pollution.

The relative importance of any single source depends on how much of a given pollutant it emits and how hazardous those emissions are. In some cases, factors such as how old the source is and whether it is properly maintained are significant. For example, an improperly adjusted gas stove can emit significantly more carbon monoxide than one that is properly adjusted.

Some sources, such as building materials, furnishings, and household products like air fresheners, release pollutants more or less continuously. Other sources, related to activities carried out in the home, release pollutants intermittently. These include smoking, the use of unvented or malfunctioning stoves, furnaces, or space heaters, the use of solvents in cleaning and hobby activities, the use of paint strippers in redecorating activities, and the use of cleaning products and pesticides in housekeeping. High pollutant concentrations can remain in the air for long periods after some of these activities.

Amount of Ventilation

If too little outdoor air enters a home, pollutants can accumulate to levels that can pose health and comfort problems. Unless they are built with special mechanical means of ventilation, homes that are designed and constructed to minimize the amount of outdoor air that can "leak" into and out of the home may have higher pollutant levels than other homes. However, because some weather conditions can drastically reduce the amount of outdoor air that enters a home, pollutants can build up even in homes that are normally considered "leaky."

How Does Outdoor Air Enter a House?

Outdoor air enters and leaves a house by: infiltration, natural ventilation, and mechanical ventilation. In a process known as infiltration, outdoor air flows into the house through openings, joints, and cracks in walls, floors, and ceilings, and around windows and doors. In natural ventilation, air moves through opened windows and doors. Air movement associated with infiltration and natural ventilation is caused by air temperature differences between indoors and outdoors and by wind. Finally, there are a number of mechanical ventilation devices, from outdoor-vented fans that intermittently remove air from a single room, such as bathrooms and kitchen, to air handling systems that use fans and duct work to continuously remove indoor air and distribute filtered and conditioned outdoor air to strategic points throughout the house. The rate at which outdoor air replaces indoor air is described as the air exchange rate. When there is little infiltration, natural ventilation, or mechanical ventilation, the air exchange rate is low and pollutant levels can increase.

Indoor Air and Your Health

Health effects from indoor air pollutants may be experienced soon after exposure or, possibly, years later. Immediate effects may show up after a single exposure or repeated exposures. These include irritation of the eyes, nose, and throat, headaches, dizziness, and fatigue. Such immediate effects are usually short-term and treatable. Sometimes the treatment is simply eliminating the person's exposure to the source of the pollution, if it can be identified. Symptoms of some diseases, including asthma, hypersensitivity pneumonitis, and humidifier fever, may also show up soon after exposure to some indoor air pollutants.

The likelihood of immediate reactions to indoor air pollutants depends on several factors. Age and preexisting medical conditions are two important influences. In other cases, whether a person reacts to a pollutant depends on individual sensitivity, which varies tremendously from person to person. Some people can become sensitized to biological pollutants after repeated exposures, and it appears that some people can become sensitized to chemical pollutants as well.

Certain immediate effects are similar to those from colds or other viral diseases, so it is often difficult to determine if the symptoms are a result of exposure to indoor air pollution. For this reason, it is important to pay attention to the time and place the symptoms occur. If the symptoms fade or go away when a person is away from the home and return when the person returns, an effort should be made to identify indoor air sources that may be possible causes. Some effects may be made worse by an inadequate supply of outdoor air or from the heating, cooling, or humidity conditions prevalent in the home.

Other health effects may show up either years after exposure has occurred or only after long or repeated periods of exposure. These effects, which include some respiratory diseases, heart disease, and cancer, can be severely debilitating or fatal. It is prudent to try to improve the indoor air quality in your home even if symptoms are not noticeable.

While pollutants commonly found in indoor air are responsible for many harmful effects, there is considerable uncertainty about what concentrations or periods of exposure are necessary to produce specific health problems. People also react very differently to exposure to indoor air pollutants. Further research is needed to better understand which health effects occur after exposure to the average pollutant concentrations found in homes and which occur from the higher concentrations that occur for short periods of time.

Identifying Air Quality Problems

Some health effects can be useful indicators of an indoor air quality problem, especially if they appear after a person moves to a new residenceremodels or refurnishes a home, or treats a home with pesticides. 

Another way to judge whether your home has or could develop indoor air problems is to identify potential sources of indoor air pollution. Although the presence of such sources does not necessarily mean that you have an indoor air quality problem, being aware of the type and number of potential sources is an important step toward assessing the air quality in your home.

A third way to decide whether your home may have poor indoor air quality is to look at your lifestyle and activities. Human activities can be significant sources of indoor air pollution. Finally, look for signs of problems with the ventilation in your home. Signs that can indicate your home may not have enough ventilation include odors, moisture condensation on windows or walls, stuffy air, dirty central heating and air cooling equipment, and areas where books, shoes, or other items become moldy. To detect odors in your home, step outside for a few minutes, and then upon reentering your home, note whether odors are noticeable.

Weatherizing Your Home

The federal government recommends that homes be weatherized in order to reduce the amount of energy needed for heating and cooling. While weatherization is underway, however, steps should also be taken to minimize pollution from sources inside the home. In addition, residents should be alert to the emergence of signs of inadequate ventilation, such as odors, stuffy air, moisture condensation on cold surfaces, or mold and mildew growth. .

Weatherization generally does not cause indoor air problems by adding new pollutants to the air. (There are a few exceptions, such as caulking, that can sometimes emit pollutants.) However, measures such as installing storm windows, weather stripping, caulking, and blown-in wall insulation can reduce the amount of outdoor air infiltrating into a home. Consequently, after weatherization, concentrations of indoor air pollutants and odors from sources inside the home can increase.

Three Basic Strategies

Source Control 1st phase

Usually the first step to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed; others, like gas stoves, can be adjusted to decrease the amount of emissions. In many cases, source control is also a more cost-efficient approach to protecting indoor air quality than increasing ventilation because increasing ventilation can increase energy costs and carbon emissions.

Ventilation Improvements 2nd phase

Another approach to lowering the concentrations of indoor air pollutants in your home is to increase the amount of outdoor air coming indoors but this results in significantly increasing your energy cost and greenhouse gas emissions (GHG). Also, most home heating and cooling systems, including forced air heating systems, do not mechanically bring fresh air into the house. Opening windows and doors, operating window or attic fans, when the weather permits, or running a window air conditioner with the vent control open increases the outdoor ventilation rate. Local bathroom or kitchen fans that exhaust outdoors remove contaminants directly from the room where the fan is located and also increase the outdoor air ventilation rate.

It is particularly important to take as many of these steps as possible while you are involved in short-term activities that can generate high levels of pollutants-for example, painting, paint stripping, heating with kerosene heaters, cooking, or engaging in maintenance and hobby activities such as welding, soldering, or sanding. You might also choose to do some of these activities outdoors, if you can and if weather permits.

Advanced designs of new homes are starting to feature mechanical systems that bring outdoor air into the home. Some of these designs include energy-efficient heat recovery ventilators (also known as air-to-air heat exchangers).

Auxilary phase3

In this phase, we've already done our best to control said contaminants and add adiquate ventilation. When this fails to remidy the problem, it might be time to look at adding products such as dehumidifiers, HEPA filtration systems, UV lights, VOC membranes, ERV and/or HRV units.

A Look at Source-Specific Controls

For most indoor air quality problems in the home, source control is the most effective solution. This section takes a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce levels in the home.

Environmental Tobacco Smoke (ETS)

Environmental tobacco smoke (ETS) is the mixture of smoke that comes from the burning end of a cigarette, pipe, or cigar, and smoke exhaled by the smoker. It is a complex mixture of over 4,000 compounds, more than 40 of which are known to cause cancer in humans or animals and many of which are strong irritants. ETS is often referred to as "secondhand smoke" and exposure to ETS is often called "passive smoking."

Health Effects of Environmental Tobacco Smoke

In 1992, EPA completed a major assessment of the respiratory health risks of ETS (Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders EPA/600/6-90/006F). The report concludes that exposure to ETS is responsible for approximately 3,000 lung cancer deaths each year in nonsmoking adults and impairs the respiratory health of hundreds of thousands of children.

Infants and young children whose parents smoke in their presence are at increased risk of lower respiratory tract infections (pneumonia and bronchitis) and are more likely to have symptoms of respiratory irritation like cough, excess phlegm, and wheeze. EPA estimates that passive smoking annually causes between 150,000 and 300,000 lower respiratory tract infections in infants and children under 18 months of age, resulting in between 7,500 and 15,000 hospitalizations each year. These children may also have a build-up of fluid in the middle ear, which can lead to ear infections. Older children who have been exposed to secondhand smoke may have slightly reduced lung function.

Asthmatic children are especially at risk. EPA estimates that exposure to secondhand smoke increases the number of episodes and severity of symptoms in hundreds of thousands of asthmatic children, and may cause thousands of non-asthmatic children to develop the disease each year. EPA estimates that between 200,000 and 1,000,000 asthmatic children have their condition made worse by exposure to secondhand smoke each year. Exposure to secondhand smoke causes eye, nose, and throat irritation. It may affect the cardiovascular system and some studies have linked exposure to secondhand smoke with the onset of chest pain.

Reducing Exposure to Environmental Tobacco Smoke

Don't smoke at home or permit others to do so. Ask smokers to smoke outdoors.

If smoking indoors cannot be avoided, increase ventilation in the area where smoking takes place.

Children are particularly susceptible to the effects of passive smoking. Do not allow baby-sitters or others who work in your home to smoke indoors. Discourage others from smoking around children. Find out about the smoking policies of the day care center providers, schools, and other care givers for your children. The policy should protect children from exposure to ETS.

Biological Contaminants
Biological contaminants include bacteria, molds, mildew, viruses, animal dander and cat saliva, house dust mites, cockroaches, and pollen. There are many sources of these pollutants. Pollens originate from plants; viruses are transmitted by people and animals; bacteria are carried by people, animals, and soil and plant debris; and household pets are sources of saliva and animal dander. The protein in urine from rats and mice is a potent allergen. When it dries, it can become airborne. Contaminated central air handling systems can become breeding grounds for mold, mildew, and other sources of biological contaminants and can then distribute these contaminants through the home. 

By controlling the relative humidity level in a home, the growth of some sources of biologicals can be minimized. A relative humidity of 30-50 percent is generally recommended for homes. Standing water, water-damaged materials, or wet surfaces also serve as a breeding ground for molds, mildews, bacteria, and insects. House dust mites, the source of one of the most powerful biological allergens, grow in damp, warm environments.

Health Effects from Biological Contaminants
Some biological contaminants trigger allergic reactions, including hypersensitivity pneumonitis, allergic rhinitis, and some types of asthma. Infectious illnesses, such as influenza, measles, and chicken pox are transmitted through the air. Molds and mildews release disease-causing toxins. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fever, and digestive problems.

Allergic reactions occur only after repeated exposure to a specific biological allergen. However, that reaction may occur immediately upon re-exposure or after multiple exposures over time. As a result, people who have noticed only mild allergic reactions, or no reactions at all, may suddenly find themselves very sensitive to particular allergens.

Some diseases, like humidifier fever, are associated with exposure to toxins from microorganisms that can grow in large building ventilation systems. However, these diseases can also be traced to microorganisms that grow in home heating and cooling systems and humidifiers. Children, elderly people, and people with breathing problems, allergies, and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air.

People who are allergic to these pollutants should use allergen-proof mattress encasements, wash bedding in hot (130o F) water, and avoid room furnishings that accumulate dust, especially if they cannot be washed in hot water. Allergic individuals should also leave the house while it is being vacuumed because vacuuming can actually increase airborne levels of mite allergens and other biological contaminants. Using central vacuum systems that are vented to the outdoors or vacuums with high efficiency filters may also be of help.

Health Effects of Combustion Products

Carbon monoxide (CO) is a colorless, odorless gas that interferes with the delivery of oxygen throughout the body. At high concentrations it can cause unconsciousness and death. Lower concentrations can cause a range of symptoms from headaches, dizziness, weakness, nausea, confusion, and disorientation, to fatigue in healthy people and episodes of increased chest pain in people with chronic heart disease. The symptoms of carbon monoxide poisoning are sometimes confused with the flu or food poisoning. Fetuses, infants, elderly people, and people with anemia or with a history of heart or respiratory disease can be especially sensitive to carbon monoxide exposures.

Nitrogen dioxide (NO2) is a colorless, odorless gas that irritates the mucous membranes in the eye, nose, and throat and causes shortness of breath after exposure to high concentrations. There is evidence that high concentrations or continued exposure to low levels of nitrogen dioxide increases the risk of respiratory infection; there is also evidence from animal studies that repeated exposures to elevated nitrogen dioxide levels may lead, or contribute, to the development of lung disease such as emphysema. People at particular risk from exposure to nitrogen dioxide include children and individuals with asthma and other respiratory diseases.

Particles, released when fuels are incompletely burned, can lodge in the lungs and irritate or damage lung tissue. A number of pollutants, including radon and benzo(a)pyrene, both of which can cause cancer, attach to small particles that are inhaled and then carried deep into the lung.

Take special precautions when operating fuel-burning unvented space heaters.

Consider potential effects of indoor air pollution if you use an unvented kerosene or gas space heater. Follow the manufacturer's directions, especially instructions on the proper fuel and keeping the heater properly adjusted. A persistent yellow-tipped flame is generally an indicator of maladjustment and increased pollutant emissions. While a space heater is in use, open a door from the room where the heater is located to the rest of the house and open a window slightly.

Install and use exhaust fans over gas cooking stoves and ranges and keep the burners properly adjusted.

Using a stove hood with a fan vented to the outdoors greatly reduces exposure to pollutants during cooking. Improper adjustment, often indicated by a persistent yellow-tipped flame, causes increased pollutant emissions. Ask your gas company to adjust the burner so that the flame tip is blue. If you purchase a new gas stove or range, consider buying one with pilotless ignition because it does not have a pilot light that burns continuously. Never use a gas stove to heat your home. Always make certain the flue in your gas fireplace is open when the fireplace is in use.

Keep woodstove emissions to a minimum. Choose properly sized new stoves that are certified as meeting EPA emission standards.

Make certain that doors in old woodstoves are tight-fitting. Use aged or cured (dried) wood only and follow the manufacturer's directions for starting, stoking, and putting out the fire in woodstoves. Chemicals are used to pressure-treat wood; such wood should never be burned indoors.

Have central air handling systems, including furnaces, flues, and chimneys, inspected annually and promptly repair cracks or damaged parts.

Blocked, leaking, or damaged chimneys or flues release harmful combustion gases and particles and even fatal concentrations of carbon monoxide. Strictly follow all service and maintenance procedures recommended by the manufacturer, including those that tell you how frequently to change the filter. If manufacturer's instructions are not readily available, change filters once every month or two during periods of use. Proper maintenance is important even for new furnaces because they can also corrode and leak combustion gases, including carbon monoxide.

Household Products

Organic chemicals are widely used as ingredients in household products. Paints, varnishes, and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing, and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.

EPA's Total Exposure Assessment Methodology (TEAM) studies found levels of about a dozen common organic pollutants to be 2 to 5 times higher inside homes than outside, regardless of whether the homes were located in rural or highly industrial areas. Additional TEAM studies indicate that while people are using products containing organic chemicals, they can expose themselves and others to very high pollutant levels, and elevated concentrations can persist in the air long after the activity is completed.

Health Effects of Household Chemicals

The ability of organic chemicals to cause health effects varies greatly, from those that are highly toxic, to those with no known health effect. As with other pollutants, the extent and nature of the health effect will depend on many factors including level of exposure and length of time exposed. Eye and respiratory tract irritation, headaches, dizziness, visual disorders, and memory impairment are among the immediate symptoms that some people have experienced soon after exposure to some organics. At present, not much is known about what health effects occur from the levels of organics usually found in homes. Many organic compounds are known to cause cancer in animals; some are suspected of causing, or are known to cause, cancer in humans.

Throw away partially full containers of old or unneeded chemicals safely. Because gases can leak even from closed containers, this single step could help lower concentrations of organic chemicals in your home. (Be sure that materials you decide to keep are stored not only in a well-ventilated area but are also safely out of reach of children.) Do not simply toss these unwanted products in the garbage can. Find out if your local government or any organization in your community sponsors special days for the collection of toxic household wastes. If such days are available, use them to dispose of the unwanted containers safely. If no such collection days are available, think about organizing one.

Buy limited quantities. If you use products only occasionally or seasonally, such as paints, paint strippers, and kerosene for space heaters or gasoline for lawn mowers, buy only as much as you will use right away.

Keep exposure to emissions from products containing methylene chloride to a minimum. Consumer products that contain methylene chloride include paint strippers, adhesive removers, and aerosol spray paints. Methylene chloride is known to cause cancer in animals. Also, methylene chloride is converted to carbon monoxide in the body and can cause symptoms associated with exposure to carbon monoxide. Carefully read the labels containing health hazard information and cautions on the proper use of these products. Use products that contain methylene chloride outdoors when possible; use indoors only if the area is well ventilated.

Keep exposure to benzene to a minimum. Benzene is a known human carcinogen. The main indoor sources of this chemical are environmental tobacco smoke, stored fuels and paint supplies, and automobile emissions in attached garages. Actions that will reduce benzene exposure include eliminating smoking within the home, providing for maximum ventilation during painting, and discarding paint supplies and special fuels that will not be used immediately.

Keep exposure to perchloroethylene emissions from newly dry-cleaned materials to a minimum. Perchloroethylene is the chemical most widely used in dry cleaning. In laboratory studies, it has been shown to cause cancer in animals. Recent studies indicate that people breathe low levels of this chemical both in homes where dry-cleaned goods are stored and as they wear dry-cleaned clothing. Dry cleaners recapture the perchloroethylene during the dry-cleaning process so they can save money by re-using it, and they remove more of the chemical during the pressing and finishing processes. Some dry cleaners, however, do not remove as much perchloroethylene as possible all of the time. Taking steps to minimize your exposure to this chemical is prudent. If dry-cleaned goods have a strong chemical odor when you pick them up, do not accept them until they have been properly dried. If goods with a chemical odor are returned to you on subsequent visits, try a different dry cleaner.

Formaldehyde. Formaldehyde is an important chemical used widely by industry to manufacture building materials and numerous household products. It is also a by-product of combustion and certain other natural processes. Thus, it may be present in substantial concentrations both indoors and outdoors.

Sources of formaldehyde in the home include building materials, smoking, household products, and the use of unvented, fuel-burning appliances, like gas stoves or kerosene space heaters. Formaldehyde, by itself or in combination with other chemicals, serves a number of purposes in manufactured products. For example, it is used to add permanent-press qualities to clothing and draperies, as a component of glues and adhesives, and as a preservative in some paints and coating products.

In homes, the most significant sources of formaldehyde are likely to be pressed wood products made using adhesives that contain urea-formaldehyde (UF) resins. Pressed wood products made for indoor use include: particleboard (used as subflooring and shelving and in cabinetry and furniture); hardwood plywood paneling (used for decorative wall covering and used in cabinets and furniture); and medium density fiberboard (used for drawer fronts, cabinets, and furniture tops). Medium density fiberboard contains a higher resin-to-wood ratio than any other UF pressed wood product and is generally recognized as being the highest formaldehyde-emitting pressed wood product.

Other pressed wood products, such as softwood plywood and flake or oriented strandboard, are produced for exterior construction use and contain the dark, or red/black-colored phenol-formaldehyde (PF) resin. Although formaldehyde is present in both types of resins, pressed woods that contain PF resin generally emit formaldehyde at considerably lower rates than those containing UF resin.

Since 1985, the Department of Housing and Urban Development (HUD) has permitted only the use of plywood and particleboard that conform to specified formaldehyde emission limits in the construction of prefabricated and mobile homes. In the past, some of these homes had elevated levels of formaldehyde because of the large amount of high-emitting pressed wood products used in their construction and because of their relatively small interior space.

The rate at which products like pressed wood or textiles release formaldehyde can change. Formaldehyde emissions will generally decrease as products age. When the products are new, high indoor temperatures or humidity can cause increased release of formaldehyde from these products.

During the 1970s, many homeowners had urea-formaldehyde foam insulation (UFFI) installed in the wall cavities of their homes as an energy conservation measure. However, many of these homes were found to have relatively high indoor concentrations of formaldehyde soon after the UFFI installation. Few homes are now being insulated with this product. Studies show that formaldehyde emissions from UFFI decline with time; therefore, homes in which UFFI was installed many years ago are unlikely to have high levels of formaldehyde now.

Health Effects of Formaldehyde. Formaldehyde, a colorless, pungent-smelling gas, can cause watery eyes, burning sensations in the eyes and throat, nausea, and difficulty in breathing in some humans exposed at elevated levels (above 0.1 parts per million). High concentrations may trigger attacks in people with asthma. There is evidence that some people can develop a sensitivity to formaldehyde. It has also been shown to cause cancer in animals and may cause cancer in humans.

Pesticides. According to a recent survey, 75 percent of U.S. households used at least one pesticide product indoors during the past year. Products used most often are insecticides and disinfectants. Another study suggests that 80 percent of most people's exposure to pesticides occurs indoors and that measurable levels of up to a dozen pesticides have been found in the air inside homes. The amount of pesticides found in homes appears to be greater than can be explained by recent pesticide use in those households; other possible sources include contaminated soil or dust that floats or is tracked in from outside, stored pesticide containers, and household surfaces that collect and then release the pesticides. Pesticides used in and around the home include products to control insects (insecticides), termites (termiticides), rodents (rodenticides), fungi (fungicides), and microbes (disinfectants). They are sold as sprays, liquids, sticks, powders, crystals, balls, and foggers. Recently, safer chemical free pest control products such as Pesteze™ have been successfully introduced.

In 1990, the American Association of Poison Control Centers reported that some 79,000 children were involved in common household pesticide poisonings or exposures. In households with children under five years old, almost one-half stored at least one pesticide product within reach of children.

EPA registers pesticides for use and requires manufacturers to put information on the label about when and how to use the pesticide. It is important to remember that the "-cide" in pesticides means "to kill." These products can be dangerous if not used properly.

In addition to the active ingredient, pesticides are also made up of ingredients that are used to carry the active agent. These carrier agents are called "inerts" in pesticides because they are not toxic to the targeted pest; nevertheless, some inerts are capable of causing health problems.

Health Effects From Pesticides

Both the active and inert ingredients in pesticides can be organic compounds; therefore, both could add to the levels of airborne organics inside homes. Both types of ingredients can cause the effects discussed in this document under "Household Products," however, as with other household products, there is insufficient understanding at present about what pesticide concentrations are necessary to produce these effects.

Exposure to high levels of cyclodiene pesticides, commonly associated with misapplication, has produced various symptoms, including headaches, dizziness, muscle twitching, weakness, tingling sensations, and nausea. In addition, EPA is concerned that cyclodienes might cause long-term damage to the liver and the central nervous system, as well as an increased risk of cancer.

There is no further sale or commercial use permitted for the following cyclodiene or related pesticides: chlordane, aldrin, dieldrin, and heptachlor. The only exception is the use of heptachlor by utility companies to control fire ants in underground cable boxes.

Keep exposure to moth repellents to a minimum.

Asbestos is a mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant. EPA and CPSC have banned several asbestos products. Manufacturers have also voluntarily limited uses of asbestos. Today, asbestos is most commonly found in older homes, in pipe and furnace insulation materials, asbestos shingles, millboard, textured paints and other coating materials, and floor tiles.

Elevated concentrations of airborne asbestos can occur after asbestos-containing materials are disturbed by cutting, sanding or other remodeling activities. Improper attempts to remove these materials can release asbestos fibers into the air in homes, increasing asbestos levels and endangering people living in those homes.

Health Effects of Asbestos

The most dangerous asbestos fibers are too small to be visible. After they are inhaled, they can remain and accumulate in the lungs. Asbestos can cause lung cancer, mesothelioma (a cancer of the chest and abdominal linings), and asbestosis (irreversible lung scarring that can be fatal). Symptoms of these diseases do not show up until many years after exposure began. Most people with asbestos-related diseases were exposed to elevated concentrations on the job; some developed disease from exposure to clothing and equipment brought home from job sites.

Lead (Pb)

Lead has long been recognized as a harmful environmental pollutant. In late 1991, the Secretary of the Department of Health and Human Services called lead the "number one environmental threat to the health of children in the United States." There are many ways in which humans are exposed to lead: through air, drinking water, food, contaminated soil, deteriorating paint, and dust. Airborne lead enters the body when an individual breathes or swallows lead particles or dust once it has settled. Before it was known how harmful lead could be, it was used in paint, gasoline, water pipes, and many other products. 

Old lead-based paint is the most significant source of lead exposure in the U.S. today. Harmful exposures to lead can be created when lead-based paint is improperly removed from surfaces by dry scraping, sanding, or open-flame burning. High concentrations of airborne lead particles in homes can also result from lead dust from outdoor sources, including contaminated soil tracked inside, and use of lead in certain indoor activities such as soldering and stained-glass making.

Health Effects of Exposure to Lead

Lead affects practically all systems within the body. At high levels it can cause convulsions, coma, and even death. Lower levels of lead can adversely affect the brain, central nervous system, blood cells, and kidneys.

The effects of lead exposure on fetuses and young children can be severe. They include delays in physical and mental development, lower IQ levels, shortened attention spans, and increased behavioral problems. Fetuses, infants, and children are more vulnerable to lead exposure than adults since lead is more easily absorbed into growing bodies, and the tissues of small children are more sensitive to the damaging effects of lead. Children may have higher exposures since they are more likely to get lead dust on their hands and then put their fingers or other lead-contaminated objects into their mouths.

Get your child tested for lead exposure. To find out where to do this, call your doctor or local health clinic. For more information on health effects, get a copy of the Centers for Disease Control's, Preventing Lead Poisoning in Young Children (October 1991).

Most well and city water does not usually contain lead. Water usually picks up lead inside the home from household plumbing that is made with lead materials. The only way to know if there is lead in drinking water is to have it tested. Contact the local health department or the water supplier to find out how to get the water tested. Send for the EPA pamphlet, Lead and Your Drinking Water, for more information about what you can do if you have lead in your drinking water. Call EPA's Safe Drinking Water Hotline (800-426-4791) for more information.

When Building a New Home
Building a new home provides the opportunity for preventing indoor air problems. However, it can result in exposure to higher levels of indoor air contaminants if careful attention is not given to potential pollution sources and the air exchange rate.

Express your concerns about indoor air quality to your architect or builder and enlist his or her cooperation in taking measures to provide good indoor air quality. Talk both about purchasing building materials and furnishings that are low-emitting and about providing an adequate amount of ventilation.

The American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) recommends a ventilation rate of 0.35 ach (air changes per hour) for new homes, and some new homes are built to even tighter specifications. Particular care should be given in such homes to preventing the build-up of indoor air pollutants to high levels.

Here are a few important actions that can make a difference:

There are many actions a homeowner can take to select products that will prevent indoor air problems from occurring - a couple of them are mentioned here. First, use exterior-grade pressed wood products made with phenol-formaldehyde resin in floors, cabinetry, and wall surfaces. Or, as an alternative, consider using solid wood products. Secondly, if you plan to install wall-to-wall carpet on concrete in contact with the ground, especially concrete in basements, make sure that an effective moisture barrier is installed prior to installing the carpet. Do not permanently adhere carpet to concrete with adhesives so that the carpet can be removed if it becomes wet. Thirdly, we recommend using the multi-tasking Sanibulb™ to sanitize, purify and deodorize the air harnessing the power of light while saving energy and reducing pollution.

As you can see, the best solution to indoor air quality is prevention! However, if you still have concerns about your air quality, call us @ 504-6453 and we'll have one of our highly trained specialist out as soon as possible to diagnose the problem.

Glossary of Terms
Acid Aerosol: Acidic liquid or solid particles that are small enough to become airborne. High concentrations of acid aerosols can be irritating to the lungs and have been associated with some respiratory diseases, such as asthma.

Animal Dander: Tiny scales of animal skin.

Allergen: A substance capable of causing an allergic reaction because of an individual's sensitivity to that substance.

Allergic Rhinitis: Inflammation of the mucous membranes in the nose that is caused by an allergic reaction.

Building-Related Illness: A discrete, identifiable disease or illness that can be traced to a specific pollutant or source within a building. (Contrast with "Sick building syndrome").

Chemical Sensitization: Evidence suggests that some people may develop health problems characterized by effects such as dizziness, eye and throat irritation, chest tightness, and nasal congestion that appear whenever they are exposed to certain chemicals. People may react to even trace amounts of chemicals to which they have become "sensitized."

Environmental Tobacco Smoke (ETS): Mixture of smoke from the burning end of a cigarette, pipe, or cigar and smoke exhaled by the smoker (also secondhand smoke or passive smoking). See Smoke-free Homes Program at

Fungi: Any of a group of parasitic lower plants that lack chlorophyll, including molds and mildews. (see )

Humidifier Fever: A respiratory illness caused by exposure to toxins from microorganisms found in wet or moist areas in humidifiers and air conditioners. Also called air conditioner or ventilation fever.

Hypersensitivity Pneumonitis: A group of respiratory diseases that cause inflammation of the lung (specifically granulomatous cells). Most forms of hypersensitivity pneumonitis are caused by the inhalation of organic dusts, including molds.

Organic Compounds: Chemicals that contain carbon. Volatile organic compounds vaporize at room temperature and pressure. They are found in many indoor sources, including many common household products and building materials.

PicoCurie (pCi): A unit for measuring radioactivity, often expressed as picocuries per liter (pCi/L) of air.

Pressed Wood Products: A group of materials used in building and furniture construction that are made from wood veneers, particles, or fibers bonded together with an adhesive under heat and pressure.

Radon (Rn) and Radon Decay Products: Radon is a radioactive gas formed in the decay of uranium. The radon decay products (also called radon daughters or progeny) can be breathed into the lung where they continue to release radiation as they further decay.

Sick Building Syndrome: Term that refers to a set of symptoms that affect some number of building occupants during the time they spend in the building and diminish or go away during periods when they leave the building. Cannot be traced to specific pollutants or sources within the building. (Contrast with "Building related illness").

Ventilation Rate: The rate at which indoor air enters and leaves a building. Expressed in one of two ways: the number of changes of outdoor air per unit of time (air changes per hour, or "ach") or the rate at which a volume of outdoor air enters per unit of time (cubic feet per minute, or "cfm").

Indoor Air Quality